AN UNUSUAL REARRANGEMENT OF A CAGE DIKETONE MONOTOSYLHYDRAZONE; A NEW FRAGMENTATION OF THE PCUD SKELETON

James M. Coxon*, Siew Tai Fong, and Peter J. Steel*
Department of Chemistry, University of Canterbury, Christchurch, New Zealand

Summary: The cage diketone monotosylhydrazone 3 undergoes rearrangement with double α-cleavage of the cage skeleton to give a product, 4, which formally corresponds to insertion of cyclopentadiene between the rings of naphthoquinone.

The chemistry of pentacyclo[5.4.0.0 2,6.0 3, 10.05,9]undecane (PCUD, 1) derivatives has been the subject of considerable recent study ${ }^{1}$. Synthetically important rearrangements of this carbon skeleton include C1-C7 to C1-C8 bond reorganisations to trishomocubane derivatives ${ }^{1}$ and $[2+2]$ cycloreversions to linear triquinanes (by $\mathrm{C} 1-\mathrm{C} 7$ and $\mathrm{C} 2-\mathrm{C} 6$ bond cleavage), the latter having been employed in several natural product syntheses ${ }^{1-3}$. We ${ }^{4,5}$, and others ${ }^{6}$, are currently interested in the study of π-facial selectivity in Diels Alder reactions of the PCUD-fused diene 2. In the course of preparing functionalised derivatives of 2 we required a supply of the monotosylhydrazone 3 , which we herein report to undergo a novel rearrangement to the pentacyclic pyridazine derivatives 4.

(1)

(2) $X=O$
(3) $\mathrm{X}=$ NNHTs

Reaction of 2 with one equivalent of p-tosylhydrazine in refluxing ethanol for 30 min gave the expected mono-hydrazone 3^{7} as a minor (15\%) product along with a rearranged product subsequently identified as $\mathbf{4 a}(\mathbf{8 5 \%})$. The smooth conversion of 3 into $\mathbf{4 a}$ and $\mathbf{4 b}$ in refluxing ethanol and methanol respectively demonstrated that 4a was a secondary product. The structural identity of 4a was deduced from its spectroscopic properties7; in particular the NMR spectra indicated the presence of an ortho-disubstituted benzene ring and a tetra-endosubstituted norbornane skeleton. The structure was confirmed by a single crystal X-ray structure determination ${ }^{8}$ of the ethanol solvate ${ }^{9}$ of 4 a. Figure 1 shows a perspective view of the structure of $\mathbf{4 a}$. The fusion of a benzocyclobutene to the norbornane skeleton results in an elongation of the C2-C9 bond. The structure is of particular interest because of the way in which the norbornane skeleton enforces a cofacial orientation of the benzene and pyridazine rings, their meanplanes being approximately coplanar (16°) and separated by ca. 3 A. As a result the molecule contains a molecular cleft which has potential to act as a host for inclusion compounds.

The conversion of 3 to 4, Scheme 1, is considered to involve a [4+2] cycloreversion of the heptacyclic intermediate 5, a process driven by aromatisation. This rearrangement represents a

Figure 1.Perspective view of the X-ray structure of 4a. Selected bond lengths (\mathcal{A}) and angles $\left.{ }^{(}\right)$): C2-C9, 1.572(3); C11-C16, 1.554(3); C3-C2-C9, 86.8(2); C2-C9-C8, 86.4(2); C2-C3-C4, 143.9(2); C7-C8-C9, 144.4(2); C2-C3-C8, 93.5(2); C3-C8-C9, 93.3(2).
new fragmentation pathway for the PCUD skeleton and involves double α-cleavage of the precursor. A photoinduced double β-cleavage of $\mathbf{2}$ has recently been claimed ${ }^{10}$. The structure of the carbon skeleton of 4 is of interest when one considers the origin of the component fragments; the reaction sequence leading to 4 formally corresponds to the insertion of cyclopentadiene between the rings of the naphthoquinone precursor.

Scheme 1.

References and Notes

(1) A.P. Marchand, in 'Advances in Theoretically Interesting Molecules', Vol. 1; ed R.P. Thummel, JAI Press, Greenwich, CN, 1989, p 357.
(2) G. Mehta, A. Srikrisna, A.V. Reddy, and M.S. Nair, Tetrahedron, 1981, 37, 4543.
(3) G. Mehta and M.S. Reddy, Tetrahedron Lett, 1990, 31, 2039.
(4) J.M. Coxon, M.J. O'Connell, and P.J. Steel, J. Org. Chem., 1987, 52, 4726.
(5) J.M. Coxon, R.G.A.R. Maclagan, D.Q. McDonald, and P.J. Steel, J. Org. Chem., submitted.
(6) B. Pandey, U.R. Zope, and N.R. Ayyangar, Synth. Commun., 1989, 19, 585.
(7) All new compounds gave spectral and analytical data consistent with the assigned structures. Selected data for 3: m.p. $215-216^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta 1.59$ (d, 1H), $1.89(\mathrm{~d}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 3.25$ (m, 1H), 3.71 (m, 1H), 5.40 (m, 2H), 5.98 (m, 2H), 7.47 (dd, 2H), 7.75 (dd, 2H), 10.73 (s, 1H); ${ }^{13} \mathrm{C}$ NMR (75MHz, D_{6}-DMSO) $\delta 21.1,37.4,42.8,45.9,46.4,48.5,50.0,50.4,53.0,54.0$, 120.7. 122.2, 122.8, 124.1, 127.3(2C), 129.5(2C), 136.2, 143.3, 162.2, 212.1. Selected data for 4a: m.p. $185-186^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30(\mathrm{t}, 3 \mathrm{H}$), $1.80(\mathrm{~d}, 1 \mathrm{H}), 1.86$ (d, 1H), $2.92(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.96$ $(\mathrm{m}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3,39.2,41.3,43.8(2 \mathrm{C}), 44.3,49.1$, 49.2, 61.6, 124.1, 126.5, 127.3, 127.4, 154.9, 166.8. Selected data for 4b: m.p. $170-171^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.82(\mathrm{~d}, 1 \mathrm{H}), 1.89(\mathrm{~d}, 1 \mathrm{H}), 2.93(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H})$, $3.50(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 39.1, 41.3, 43.8 (2C), 44.3, 49.1, 49.2, 53.2, 124.2, 126.6, 127.3, 127.5, 155.1, 166.8.
(8) Crystal data: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} . \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{M}=328.4$, monoclinic, space group $\mathrm{P}_{1} / \mathrm{n}, a=$ 8.366(3), $b=16.209(6), c=12.828(5) \AA, \beta=106.17(3)^{\circ}, \quad U=1671(1) \AA 3, T=165 \mathrm{~K}, \mathrm{D}_{\mathrm{c}}=$ $1.31 \mathrm{~g} \mathrm{~cm}-3, Z=4$, colourless crystal of dimensions $0.36 \times 0.24 \times 0.22 \mathrm{~mm}, \mu(\mathrm{Mo} \mathrm{K} \alpha$) $=0.83$ $\mathbf{c m - 1}$. 3284 Unique reflections ($2 \theta \leq 52^{\circ}$) were measured with a Nicolet R3m four-circle diffractometer using graphite monochromated Mo K α radiation ($0.71069 \AA$) and fixed speed $1.2^{\circ} \omega$-scans. The data were corrected for Lorentz and polarization effects but no absorption correction was deemed necessary. 2070 Reflections were judged observed [I > $3 \sigma(1)]$. The structure was solved by direct methods and refined by blocked-cascade leastsquares procedures with all non-hydrogen atoms anisotropic and hydrogens in calculated postions, except for the OH and NH hydrogens which were located from a difference map and their positions refined. The final R and R_{w} were 0.044 and 0.055 respectively. Atom coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre as Supplementary Material.
(9) The molecules are hydrogen bonded in a cyclic array about a centre of inversion wherein two molecules of 4a are linked by ethanol hydroxyls with N13-H ... OHEt and EtOH ... O12 hydrogen bonds.
(10) B. Pandey, U.R. Zope, and N.R. Ayyangar, J. Chem. Soc., Chem. Commun., 1990, 107.

